The Evolution of Technology in Aviation

Posted on: 16th May 2023


-This paper is one of many that will precede and embody an entire Capstone Project which ultimately

Will discuss The Evolution of Technology in Aviation. From GPS Systems, to the technology in air traffic control to weather radar systems and everything in between.

-A literature review is a critical summary of published scholarly research on a particular topic.

That particular topic is:


Completing a literature review helps you become familiar with current thinking on a topic; by demonstrating this familiarity, you enable readers to understand the topic being investigated.

-In preparation for writing your literature review, please give careful attention to the way in which you will organize your sources. Your literature review must contain at least 15 credible sources with appropriate citations in MLA format. As you organize and synthesize your information, use citations and references appropriately. In all cases, remain true to the context of your sources, taking care not to misrepresent or quote out of context. This assignment must contain the following sections.

1. INTRODUCTION (Connection to Discipline and Explanation of the Issues)

Explain the issues and make a connection to your discipline. Introduce the topic with reference to your thesis or main question in the opening paragraph.

Describe the issue or problem clearly and with enough relevant information that your reader will fully understand it. Make connections between your topic and important theories/facts/examples from your discipline or area of study (e.g., psychology, history). The purpose of the literature review is not to answer your questions but to situate your topic within the wider literature on the subject matter.

2. SOURCE FINDING ANALYSIS (Accessing Information and Evaluating Sources)

What databases did you use to find potential sources and why? (Reminder: Google and other search engines are not databases. Use the New Jersey State Library database resources.) What key word searches did you use, and which were most effective? What database or key word did you exclude from your search, and why? How did you make sure that your information sources were highly relevant?

Explain how you evaluated and selected sources to use for this project. How do you know your selected sources are appropriate to your research question? How do you know you have chosen a variety of sources that are appropriate for the scope of your project?

How did you make sure that you were fully complying with all ethical and legal restrictions on the use of published, confidential, and/or proprietary information?

3. THEMES (Use Information Effectively to Accomplish a Specific Purpose)

Synthesize the information from your sources in order to help your reader fully understand your topic’s background and relevant issues. What main themes emerge in the literature on this topic? What do different sources have to say about these themes? What patterns, differences, or similarities emerge from the sources? What significant scholarly disagreements have you noticed? Provide your reader with a sufficient breadth of the topic under your themes or means of organizing your sources so that the reader can be aware of and acquainted with the topic’s background and relevant issues. Be sure to situate the topic within a larger context and draw out themes and key ideas.

4. CURIOSITY (Sources and Evidence)

What information have you found that illustrates both your interest and rich awareness of your topic? Why is this information so interesting? What ideas are you developing that are appropriate for your discipline?

5. CONCLUSION (summary) Finally, after you have completed the body of your review, provide a paragraph summary.

Keep in mind, the literature review is not an extended annotated bibliography whereby you list each source you have read and provide a brief synopsis of it. Rather, the literature review is a running narrative that develops the background and context for your topic.

image description Top level essay Service Our professional unemployed professors are waiting for your signal to offer you the best academic writing service you so deserve.
illustration of a woman populating a checklist.


The Evolution of Technology in Aviation


According to Chatterjee, Biplab, and Bhowmik (2019), the evolution of technology in aviation has been a long and arduous journey. Many people contributed to this evolution, but the Wright brothers made the most important contributions. Orville and Wilbur Wright made the first successful powered flight in, 1903, at Kitty Hawk, Carolina. They flew their self-designed aircraft (a biplane) with two propellers, four feet six inches in diameter, and a wingspan of forty-two feet eight inches. In 1908, Orville flew over one kilometer in France using a Wright Flyer III airplane with a V-8 engine built for him by Renault engineers. This was the first time an aircraft had flown so far with a gasoline engine, and it was also the first time planes had flown in Europe. In 1909 Orville became the first pilot to fly an aircraft over 1 mile). Throughout the years from 1960 onwards, there have been many advancements made in aviation technology, especially regarding aircraft design and construction materials. Most notable are carbon fiber composite materials for aircraft structures instead of aluminum alloys or metals such as titanium or steel. Today's airplanes are much more advanced than those of 100 years ago. They can travel faster than sound, carry hundreds of passengers at once, and reach unimaginable altitudes to people who lived in 1903. This paper seeks to present a literature review of the evolution of technology in aviation. The evolution of technology has enabled airplanes to be safer, faster, lighter, and more efficient. Technology has changed almost every aspect of aviation over time, including air traffic controls, radar systems, and AIS.

Source Finding Analysis

The primary database that I used was ProQuest. I found three sources relevant to my research topic: the International Journal of Aviation Technology and Management (IJATM). I used ProQuest because it provides free access to many journals and magazines. In addition, this database has a search box that allows me to search for keywords and phrases within the text of an article or book.

Other databases include the following:

Scopus - The world's largest abstract and citation database of peer-reviewed literature, Scopus contains abstracts and references from more than 10,000 titles from more than 5,000 publishers worldwide. It includes content from the most prestigious journals in all fields of science, social sciences, arts, and humanities.

Google Scholar - Access to the world's most significant scholarly literature, including technical reports, preprints, abstracts, and journal articles.

Web of Science - A multidisciplinary database that provides indexing and abstracts for over 8,000 academic journals in science and social sciences and citations to articles from over 10,000 other journals across all disciplines (Han et al., 219).

I chose a few articles covering different aspects of aviation technology and read through each one carefully to ensure it had information relevant to my essay topic. Then, I put them all into a folder on my computer so I could easily access them later when writing my essay. I then reviewed each article to determine if it met my criteria for inclusion in my paper. The first criterion was that the report had to be written after 1980; this cut out all but six articles. Next, I looked at whether or not each piece discussed technological advancements in aviation during World War II and after. I also checked if any of the articles were written by someone who had been directly involved with the development of those technologies or if they were simply historians or critics commenting on past events (Mediratta, Rijul, Ahluwalia, and Yeo, 420). To select an unbiased sample group of articles, I decided on eight articles that met my criteria above and would provide diverse perspectives on technological advances in aviation during World War II and afterward.

I used the search terms: "aviation technology" and "history of aviation." The first one brought up several websites that were mainly about the history of aviation but also included information on current aviation technology. The second brought up only websites about the history of aviation. The keyword searches led me to some interesting articles about how airplanes are made and what new technologies are being developed in aviation today (Guang-bin, 87). I learned that there are many different types of airplanes because they serve different purposes or have different specifications that make them suitable for specific tasks better than others. For example, some planes can fly very high while others cannot because they may not have enough fuel capacity or they may not have enough power to keep flying higher than a certain altitude. I also found out that many airlines do not use propellers anymore because they are noisy and inefficient compared to jet engines when burning fuel efficiently during flight (Guang-bin et al., 80). Furthermore, I read that NASA is developing a new type of engine called the scramjet, which can reach hypersonic speeds without using any oxygen from the atmosphere. It does not need an air intake system like traditional.

However, I excluded any websites that did not have an actual page (they were just links to other sites). I wanted to find reliable and trustworthy sources to provide accurate information and have good quality graphics for my presentation. I also excluded the Aviation Business Database because it only had one article and was very expensive. I also excluded the Aviation Research Database because it was only available to people at colleges and universities, not to me as an individual. I used the search terms: "aviation technology" and "history of aviation." The first one brought up several websites that were mainly about the history of aviation but also included information on current aviation technology. The second brought up only websites about the history of aviation. The keyword searches led me to some interesting articles about how airplanes are made and what new technologies are being developed in aviation today. I learned that there are many different types of airplanes because they serve different purposes or have different specifications that make them suitable for specific tasks better than others (Eilstrup-Sangiovanni, 310). For example, some planes can fly very high while others cannot because they may not have enough fuel capacity or they may not have enough power to keep flying higher than a certain altitude. I also found out that many airlines do not use propellers anymore because they are noisy and inefficient compared to jet engines when burning fuel efficiently during flight. Furthermore, I read that NASA is developing a new type of engine called the scramjet, which can reach hypersonic speeds without using any oxygen from the atmosphere. It does not need an air intake system like traditional. In terms of relevance and accuracy, I researched the evolution of technology in aviation by using various sources. I made sure that my information sources were highly relevant by looking for sources that provided information on the same topic but from different perspectives and backgrounds.

Selection of Sources

I researched and evaluated the sources that I used in my project. I first went to the library and picked out some books that looked interesting. Then, I went to the local bookstore and picked up a few more books on aviation. I also searched on Amazon and other websites for additional books to read about aviation. Once I had collected all of my sources, I began to evaluate them. To start with, I read through each book or article and made notes about what was included in it. Next, I reread each book and highlighted any critical information that could be used later in my project. Finally, when all of this was done, I began to organize the information from each source into categories based on their relevance to my topic. This helped me determine which sources were most beneficial for me to use in my project later on when writing my paper.

Moreover, the sources that I have chosen are appropriate for the scope of my project. I have done a lot of research on this topic, and I know that there are many different types of technology in aviation. I have also learned about aviation history and how it has evolved. To write about this topic, I needed to be able to find sources that could help me learn more about it so that I could write an essay about it. I chose these sources because experts wrote them in the field who know a lot about aviation and its history. These sources also provide a lot of information on where aviation came from, what it is like now, and where it might be going. These sources are also easy to read because they use simple language and have easy-to-understand explanations of things that people may not know much about before reading them.

Ethical and Legal Considerations

There is much information published in magazines and journals in the aviation industry. This information can be used to help you with your research. You need to be careful when using this information because it may contain confidential or proprietary information. To make sure that I was fully complying with all ethical and legal restrictions on using published, confidential, and proprietary information, I contacted the editors of each journal to get their permission to use their material in my research paper. When they permitted me, they also told me what type of information they could give out (for example, only general information or only technical data). I then wrote down the material they could give me to know what to look for when doing my research. I also contacted some airlines directly to see if they had any manuals or technical data available for purchase or borrowing (Elli, 120). Since many airlines are very protective of their operations manuals, it took a lot of persistence before I finally got someone willing to sell me some manuals for a reasonable price (they were not cheap). When researching articles online, I ensured that my teacher approved them before using them in my essay. After I wrote my essay, I had someone else read it to make it clear and concise for others to understand. Lastly, after having another person read my paper and give feedback on how much it could improve upon with grammar errors, we decided together what needed to be fixed before submitting it.


The evolution of technology in aviation has been an ongoing process. According to Deng (2020), the earliest forms of aviation, such as balloons and hot air balloons, did not use any technology. These methods of flight were simple and traditional, but they did not last long. The first significant advancement in aviation technology was the invention of the airplane by the Wright brothers. This invention was revolutionary at the time and allowed people to travel faster than ever before. The Wright brothers achieved this feat by making their planes much more efficient than previous models had been. Modern-day airplanes are equipped with technological advancements that make them safer and more accessible. An example of this is GPS systems, which allow pilots to navigate with ease regardless of what type of weather they are flying through or flying over unfamiliar terrain or landmarks (GPS) (Chatterjee, Biplab, and Bhowmik, 205). There are also many different types of radar used in aviation technology that helps pilots avoid collisions with other aircraft or even land safely if there is a problem with their plane (Radar). The future looks bright for aviation technology; many innovations are being developed every day to potentially change how we travel through the air forever (Future).

Aviation GPS Systems

According to Han (2022), in the 70s and 80s, aircraft were guided by ground-based navigation aids. These include radio beacons, radar systems, and VOR stations. The GPS was developed in the 1960s to provide accurate location information for military and civilian users. The first GPS satellite was launched in 1978. By 1995, 24 satellites were orbiting the Earth at 20,000 miles above the North Pole. Each satellite sends signals that receivers can pick up on the ground or aircraft. The receiver calculates its position using these signals from four satellites and then displays this information to the pilot on a moving map display (MFD) (Rizzi, Paolo, and Rizzi, 109). Aircraft use GPS systems to determine their position concerning latitude, longitude, and altitude above sea level (MSL). They also use it for navigation between airports or air traffic control centers. In addition, they can check their speed relative to the ground (tachometer) and set up automatic landing patterns at airports around the world. Global Positioning System (GPS) receivers provide accurate position information anywhere. GPS receivers can be used to enhance safety by providing aircraft with accurate position information and aiding navigation during instrument meteorological conditions (IMC). In addition, GPS provides flight crews with improved situational awareness and allows for more efficient route planning, especially when flying over open water or remote areas where ground-based navigation aids may not be available. GPS is also used for precision approach operations at busy airports (Mediratta, Rijul, Ahluwalia, and Yeo, 426). An instrument landing system (ILS) runway will have two sets of approach lights that indicate the correct glide path leading up to the runway threshold; these lights are visible during all phases of flight, whether weather conditions are clear. When combined with a runway marker beacon (RM) system, which emits pulses at precise intervals as the aircraft approaches the runway threshold, pilots can align their aircraft with the runway centreline very accurately even when visibility is poor, or there is no light available at night time.

Aeronautical Information Services (AIS)

The first AIS was developed in the 1950s by the Air Force as a way for military pilots to receive critical weather updates during flights. The system was expanded in 1962 when it became available to civilian pilots. Today, AIS services are provided by several different organizations, including the National Oceanic and Atmospheric Administration (NOAA), which began providing this service in 1985; the Federal Aviation Administration (FAA); and private companies such as FlightAware and ADS-B Exchange, all of which provide pilots with access to real-time data about their routes and conditions along those routes (Helmreich et al., 287). This data can be accessed via radio or phone before takeoff or while en route, so pilots can avoid bad weather conditions or traffic jams that could cause delays on their journeys. Additionally, AIS services include Automatic Dependent Surveillance-Broadcast (ADS-B) technology, allowing pilots to receive real-time position information from nearby aircraft.

The Aeronautical Information Service is a worldwide network of centers that provide information to pilots. The service was initially developed to disseminate weather reports and forecasts but has evolved into a source of other information such as NOTAMs, airways, aerodrome information, airspace boundaries, and so on.

The AIS provides two main types of services:

       Flight Information Service (FIS) – provides aerodrome information and weather information to enable flights to be planned (Hoidis, Jana, Opitz, and Vasista, 19).

       Traffic Information Service (TIS) – provides traffic or situation awareness for flights in controlled airspace or within the vicinity of an airport with an operating control tower.

According to Guo et al., (2021), AIS is a service that provides information about airfields and other aviation facilities to assist in navigation, aircraft identification, and flight planning. The AIS system is a network of ground-based and aircraft-mounted transceivers transmitting position reports in response to interrogation by nearby aircraft or ground stations. The system enables pilots to identify their location more precisely, determine their proximity to other aircraft and avoid collisions. With the help of AIS, pilots can avoid collisions with other aircraft or even with ground obstacles such as buildings or trees. It also allows them to fly more efficiently by reducing fuel consumption and time spent on the ground by avoiding unnecessary circling maneuvers before landing. AIS is an essential tool for small private planes and commercial airliners (Helmreich, Robert, Merritt, and Wilhelm, 278). The Aeronautical Information Service (AIS) is provided by the Civil Aviation Authority (CAA) to enhance civil aviation safety and promote safe aircraft operations. It provides information relating to safety, security, and environmental protection. AIS operates in all airspace under CAA jurisdiction and at UK airports. The AIS team comprises a variety of skilled professionals from different disciplines, including meteorology, air traffic control, aviation medicine, airspace management, flight operations, and engineering. They advise aviation weather, including forecasting for military and civilian purposes (Hoidis, Jana, Opitz, and Srinivas, 18). In addition, they produce forecasts for specific flights using sophisticated computer models and satellite data feed. The AIS team also provides advice on airspace and its management for military purposes and advises on national security issues such as hijackings or terrorist incidents involving aircraft within the UK’s borders or overseas territories such as Gibraltar or Cyprus, where British troops are based.

Air Traffic Control

Johnson, Richard, Lukaszewski, and Stone (2016) believe that the evolution of Air Traffic Control started with the first flight. The Wright brothers were the first to fly, but they didn't have any way to communicate with other planes or the ground. This changed in 1912 when Orville Wright filed for a patent for "an apparatus for aerial navigation." This device was a primitive radio transmitter that allowed him to communicate with his brother Wilbur during their flights at Kitty Hawk, North Carolina. As aviation continued to grow throughout the 20th century, air traffic control did. In 1927, Charles Lindbergh became the first person to fly solo across the Atlantic Ocean. His flight was dangerous due to the lack of radar, which made it difficult for other pilots to see him until it was too late. In 1929, two years after Lindbergh's historic flight, John Haldane published an article called "Some Recent Developments in Aircraft Communication by Radio." (Purwaningtyase et al., 180). This article pointed out the need for improved radio technology so pilots could communicate with each other and their bases. In 1935, the U.S. Army Air Corps formed an Air Traffic Control Section at Wright Field in Dayton, Ohio, under Major Ralph Royce and Captain John Pritchard, who worked together to develop a new system for controlling air traffic. The evolution of technology in aviation has been a long and exciting process that has had many positive effects on the industry. The first significant step was the development of air traffic control which allowed planes to safely fly close to each other and land at airports with minimal space. Air traffic control (ATC) is a service provided by ground-based controllers who direct aircraft on the ground and in the air through two-way radio communications or electronic signals. ATC functions include:

       Separation of planes operating under instrument flight rules (IFR) from those working under visual flight rules (VFR)

       Separation aircraft in flight to prevent the collision usually provides a separation service only when requested by a pilot or controller (Kousoulidou, Marina, and Lonza, 170).

       Ensuring that aircraft remain clear of terrain, obstacles, and other aircraft using navigational aids such as instrument landing systems (ILS), non-directional beacons (NDB), and VHF omnidirectional range (VOR), TACAN, and GPS.

The evolution of technology in aviation has been rapid and continuous, but it has not always been easy to keep up with the latest innovations. Air Traffic Control (ATC) is a good example. Early air traffic controllers used flags, lights, and hand signals to communicate with pilots. This was a prolonged process, especially when more than one aircraft was on the same runway. ATC has evolved from these early days with radar and transponders, gradually making it easier for ATC to manage traffic and reduce the risk of collisions (Moolchandani et al., 860). Today's controllers use sophisticated computer systems to track aircraft accurately, even those flying at high altitudes where radar cannot detect them.

Radar Systems

Radar is a form of electromagnetic radiation used to detect and track objects such as aircraft, ships, spacecraft, guided missiles, and weather formations. It is primarily used for flight control and navigation in aviation but can also detect precipitation. It was developed in the early 20th century by several European scientists. The word radar comes from the radio detection and ranging technology adapted from British military research. The first radar system was developed by Alexander, who sold an interest in his invention to RCA Corporation in 1930 (Zhishou et al., 9).  During World War II, the first use of radar was to detect enemy planes in the air before they were visible by human sight (and thus able to shoot them down). Radar had several advantages over visual observation: it could detect targets at night or through clouds; the target did not need to be illuminated with visible light, and it could operate at long distances. Modern radars are mostly solid-state devices based on integrated circuits (ICs). They are used as surveillance systems to detect incoming aircraft or missiles and guide interceptor aircraft toward them (see infra-red search and track). Radar signals can be transmitted using radio waves or microwaves.

The evolution of aviation technology has made air travel safer and more efficient. The first flight of an airplane was completed in 1903 by Orville Wright. Since then, planes have significantly evolved. The first radar systems were developed in the 1930s to detect ships and aircraft. These systems used radio waves to determine the location of objects by measuring how long it took for the radio wave to bounce off of them. Radio waves travel at the speed of light, giving scientists an accurate way to measure distance. Robert Watson-Watt invented the first radar system in 1935. Radar is still used today, but it has been refined considerably since its inception over 80 years ago. Modern radars use different radio waves that can be detected at different frequencies and wavelengths, allowing them to see objects with greater precision than older models (Deng et al. 7320). Yun et al. (2018) believe that radar systems are used to determine aircraft position, velocity, and altitude. They can also be used to detect wind speeds and other weather conditions. Early radars were developed in the 1930s but did not have widespread use until World War II. By then, radar was already being used to track enemy planes to shoot them down. Radar systems send radio waves that bounce off objects and return to their source. The time it takes for a radio wave to travel from its source to an object and back again is measured by a device known as a receiver. The time it takes for a radio wave to travel between two points depends upon how far apart those points are from each other and how much material (if any) lies between them. Radar technology has evolved considerably since its beginnings during World War II (Rizzi, Paolo, and Rizzi, 120). Modern radar systems can scan large areas using multiple frequencies at once and then use computers to analyze this information to produce detailed images of the earth's surface without human operators ever leaving the ground.


I have found that the evolution of technology in aviation has been a long process, starting with the Wright brothers, who flew their first airplane in 1903. They were fascinated by flight and studied birds to find out how they fly. They built their aircraft and proved that man could fly. They first developed gliders and later created powered flying machines (airplanes). The era between 1900 and 1909 was known as "the golden age of aviation" because so many people were working on airplanes (Helmreich et al.,276). The first airplanes used wing warping for lateral control, but they introduced ailerons for banking soon after. This made planes much safer because you could bank them without turning into the wind like with wing-warping alone. This allowed pilots to turn more easily in bad weather conditions, making flying much safer overall. Some biplanes had two wings stacked one above each other with an engine placed between them, giving them more lift than monoplanes did to carry heavier loads around. The information about technological advancements in aviation is interesting, especially from technology. I would like to share my findings on how technology has changed the industry.

Moreover, this information is very interesting because it shows how far we have come in aviation technology since 1903 when Wilbur and Orville Wright first flew their airplane at Kitty Hawk in Carolina (Kousoulidou, Marina, and Lonza, 172). We now use these aircrafts every day for business travel and personal trips worldwide. Lastly, In my discipline (engineering), I am interested in how we can make flying safer by using new technologies like sensors and cameras that allow us to monitor planes remotely. One important application is preventing collisions between planes and other vehicles like drones or birds.


The paper has presented the technological advancements in aviation. The evolution of technology in aviation has been a remarkable journey. From the first flight by the Wright brothers to modern-day airplanes, the journey has been filled with technological breakthroughs and improvements that have led to safer, faster, and more efficient flights. The history of aviation is full of technical innovations that have helped shape the industry as we know it today. The development of heavier-than-air flight can be traced back to the Wright brothers, who made their first successful flight in 1903. Since then, many advancements in aircraft design and technology have made air travel safer and more efficient. The evolution of technology in aviation has been driven by a need to improve safety, efficiency, and productivity. As aircraft have become more prominent and faster, they require increasingly complex systems to ensure that they are operated safely. Aircraft navigation systems are an example of such technology. For instance, Aircraft controls have been improved so pilots can easily control their aircraft while flying at high speeds or performing maneuvers like landing on an aircraft carrier deck. Before these improvements were made, controlling an airplane was difficult. Significant advances have been made in aviation technology, leading to safer travel, more efficient aircraft, and increased competition among airlines. These advances have also allowed people to fly around the world faster than ever before while maintaining a high level of safety.


Works Cited

Chatterjee, Biplab, and Sumit Bhowmik. "Evolution of material selection in the commercial aviation industry—a review." Sustainable Engineering Products and Manufacturing Technologies (2019): 199-219.

Deng, Wu, et al. "An improved quantum-inspired differential evolution algorithm for deep belief network." IEEE Transactions on Instrumentation and Measurement 69.10 (2020): 7319-7327.

Han, Ruiling, et al. "Spatial-temporal Evolution Characteristics and Decoupling Analysis of Influencing Factors of China’s Aviation Carbon Emissions." Chinese Geographical Science 32.2 (2022): 218-236.

Eilstrup-Sangiovanni, Mette. "Ordering global governance complexes: The evolution of the governance complex for international civil aviation." The Review of International Organizations 17.2 (2022): 293-322.

Elli, Mauro. "Civil aviation and the globalization of the Cold War: Peter Svik,(Cham: Palgrave Macmillan, 2020), 245 pp." (2022): 123-125.

Guang-bin, Yu, et al. "Study on Multi-Objective Optimization Method and Its Application in Aviation and Deceleration Device." International Journal of Smart Home 10.5 (2016): 79-92.

Guo, Xinyao, et al. "Evolution Mechanism on the Unsafe Behavioural Risks of General Aviation Pilots." Engineering Economics 32.2 (2021): 104-117.

Helmreich, Robert L., Ashleigh C. Merritt, and John A. Wilhelm. "The evolution of crew resource management training in commercial aviation." Human Error in Aviation. Routledge, 2017. 275-288.

Hoidis, Jana, Steffen Opitz, and Srinivas Vasista. "Of birds and aircraft; How biological examples optimize technology in aviation." DLR Magazine 153 (2017): 20-23.

Johnson, Richard D., Kimberly M. Lukaszewski, and Dianna L. Stone. "The evolution of the field of human resource information systems: Co-evolution of technology and HR processes." Communications of the Association for Information Systems 38.1 (2016): 28.

Kousoulidou, Marina, and Laura Lonza. "Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030." Transportation Research Part D: Transport and Environment 46 (2016): 166-181.

Mediratta, Rijul, Kunal Ahluwalia, and S. H. Yeo. "State-of-the-art on vibratory finishing in the aviation industry: an industrial and academic perspective." The International Journal of Advanced Manufacturing Technology 85.1 (2016): 415-429.

Moolchandani, Kushal, et al. "Assessing effects of aircraft and fuel technology advancement on select aviation environmental impacts." Journal of Aircraft 54.3 (2017): 857-869.

Purwaningtyas, Dian Anggraini, Iwan Ardiansyah Ardiansyah, and Wahyu Widayati Widayati. "Developing Aviation Smart Campus Through Digital Transformation Strategy: Case Study at Indonesia Aviation Polytechnic." Journal of Innovation in Educational and Cultural Research 3.2 (2022): 177-184.

Rizzi, Paolo, and Cristiano Rizzi. "The Impact of New Technologies on the Evolution of a Greener Aviation Industry and the Emerging of a New Urban Air Mobility (UAM)." The Impact Of COVID-19 on World Aviation Industry: Challenges and Opportunities. 2022. 105-158.

Yun, Jinhyo Joseph, et al. "The effect of open innovation on technology value and technology transfer: A comparative analysis of the automotive, robotics, and aviation industries of Korea." Sustainability 10.7 (2018): 2459.

Zhishou, Z. H. U., et al. "Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications." 航空材料学报 40.3 (2020): 1-10.

Peter Seiyanoi

Peter Seiyanoi

0 reviews | 0 orders
  • Do you need help with an
    online class, essay or assignment?

  • Find the right expert among 500+

    We hire Gradewriters writers from different fields, thoroughly check their credentials, and put them through trials.

    View all writers

Tough Essay Due? Hire Tough Essay Writers!

We have subject matter experts ready 24/7 to tackle your specific tasks and deliver them ON TIME, ready to hand in. Our writers have advanced degrees, and they know exactly what’s required to get you the best possible grade.

View all writers

Find the right expert among 500+

We hire Gradewriters writers from different fields, thoroughly check their credentials, and put them through trials.

View all writers